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Abstract The kinetics of linear chemical reactions in an inhomogeneous medium
is modeled as an evolutionary system characterized by a fractional derivative. The
corresponding mathematical model depending on one nonlocal parameter 0 < α < 1
is proposed. Reactions with one degree of freedom are analyzed. Solutions of the
corresponding kinetic equations are shown to depend on the nonlocality parameter α.
The concept of the critical moment of time is introduced, and the dependence of its
value on the value of the relaxation coefficient is determined.

Keywords Catalysis · Reaction kinetics · Dynamical system · Mathematical
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1 Introduction

From chemical kinetics, it is known that a homogeneous reacting chemical system
with the concentration Ci of its components is described by a system of first-order
differential equations [1–3]:

dCi

dt
= Fi (C1, C2, . . . , C f ), i = 1, 2, . . . , f. (1)

The definite kind of functions Fi depends on the reaction; it is a well-known
fact that even the simplest reactions result in non-linear functions Fi . Therefore,
in chemical kinetics, non-linearity is of decisive importance. In mechanics and
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electrical engineering we deal with quite definite types of non-linearity, whereas in
chemical reactions, because of their immense diversity, the scope of non-linearity
types is much broader. In 1967, Korzukhin proved a theorem that in the case
when Fi in Eq. (1) is an arbitrary polynomial with non-negative integer expo-
nents of a non-negative whole number, it is always possible to construct at least
one asymptotically equivalent chemical reacting system [4]. It is not always pos-
sible exactly, e.g., there is no reaction leading to x ′ = y, y′ = −x, since no
negative cross-effect should be present [5]. From this theorem, it follows that
in chemical kinetics any, even most complex, types of non-linearity are possi-
ble [6].

In case of an inhomogeneous chemical system, the mathematical modelling of
a kinetic equation is a result of the further complication of the functions Fi , i.e.
of the right side of Eq. (1). On the other hand, as our recent study has shown [7],
inhomogeneity may be stated as a result of generalizing the very concept of a dynamical
system, i.e. the left side of Eq. (1).

In the physical sense, such a generalization is based on experimental facts showing
a slower so-called subdiffusion ((�x)2 ∼ t1−α) and a faster superdiffusion ((�x)2 ∼
t1+α) [8,9]. The physical processes in these cases qualitatively agree with the results
of the computer modelling of diffusion on fractal polynomials [10,11].

In the mathematical sense, the generalization of the concept of a dynamical system
means transition from the concept of the classical derivative to its integro-differential
generalization [12]. Numerous examples of physical and technical applications of the
fractional calculus are mentioned in the monographs [13,14].

The present study is an attempt to apply the generalized concepts of a dynamical
system, proposed by the author, to the description of linear catalytical reactions in
inhomogeneous chemical systems. Instead of a system of Eq. (1), we propose to
consider a system of integro-differential equations:

d{αi }C
dt {αi } = Fi (C1, C2, . . . , C f ), αi > 0, i = 1, 2, . . . , f, (2)

where dα/dtα is the so-called fractional derivative (see “Appendix” and, e.g., [12,14])
and d{α}/dt {α} = τα−1dα/dtα − δα,0 is the evolutionary operator. To escape the
problems related to dimensions, we have used the operator d{α}/dt {α} with parameter
τ , which is the characteristic time scale of reaction (2).

2 Autocatalytical reactions

Autocatalysis takes place when the reaction products catalytically accelerate the reac-
tion itself, i.e. when the rate of the reaction increases with increasing the concentra-
tion of its products. Autocatalytic reactions are reactions of propagation or growth.
A substance exhibiting an autocatalytic action is capable of self-reproduction at the
expense of the initial substances A, B, . . ., which are either consumed in the course
of the reaction or are changed into structurally and energetically poorer end products
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F, G, . . . as a rule, the reactions proceed through the formation of catalytical com-
plexes with a lower energy of activation, for example:

A + X � AX; (3)

AX → X + X. (4)

The kinetic equation of this reaction is typical of autocatalysis:

d

dt
CX = kCACX . (5)

A known example of autocatalytic reaction is oxidation–reduction reactions:

Ce3+ + · · · � Ce4+ + · · · ,

Mn2+ + · · · � Mn3+ + · · · ,

Fe2+ + · · · � Fe3+ + · · ·
(6)

in the presence of Br−, Br O−
3 ions and organic reductants such as malonic, bromo-

malonic, acetoacetic, oxalic, apple or citric acids. One of the best-known examples of
autocatalysis among oxidation–reduction reactions is the oxidation of oxalic acid by
potassium permanganate:

2MnO−
4 + 5C2 O2−

4 + 16H+ → 2Mn2+ + 10C O2 + 8H2 O.

Mn2+ ions serve as the catalysers of this reaction.
While studying these oxidation–reduction reactions, Bray [15], Belousov [16],

Zhabotinsky [4,17] and numerous other investigators observed the periodical course
of a special type of such reactions [18,19]. The light absorption variation curve shows
the presence of typical relaxation oscillations, their shape greatly differing from sinu-
soidal. Relaxation oscillations are typical of strongly nonlinear systems [20]. Light
absorption was measured in the violet and close-to-violet regions of the spectrum; it
is determined mainly by the concentration of Ce4+, Mn3+ and Fe3+ ions. Zhabotin-
sky in [17], observed 10 to 50 oscillations of absorption, with the frequency and
amplitude instability not exceeding 1 %. The reaction took place in a strongly acidic
medium (3nH2SO4) in the presence of KBrO3. The frequency of oscillations depends
on the concentration of reductants (about 0.25 gmol/l) and potassium bromide (about
0.07 gmol/l) and varies within 0.01 to 0.2 s. According to Zhabotinsky, the course of
this reaction in the presence of bromomalonic acid may be presented by the following
scheme:

Ce4+ C3 H3 Br O4−→ Ce3+ + Br−,

Ce3+ Br O−
3−→ Ce4+.

(7)

Autocatalytic as well as cross-catalytical (mutually catalytical) and fermentative reac-
tions are interesting as dynamical systems, as the evolutionary systems exhibiting

123



J Math Chem (2013) 51:914–926 917

considerable nonlinearities. Nonlinear dynamical systems have the kinetic equation
solutions which describe unstable stationary states, periodical processes or processes
in trigger systems. Solutions with such properties (as was shown by Jost and Meixner)
are in principle impossible in linear systems [21,22]. However, the possible nonlocality
in an evolutionary Eq. (2) even more complicates the behavior of its solution.

Employing the methodological principle of R. Descartes (“from simple to com-
plex”), let us consider the general properties of a nonlinear, one-dimensional evolu-
tionary system and the difference in the local and nonlocal evolutionary behavior of a
chemical reaction.

3 Nonlocal reactions with one degree of freedom

For a reaction in which the concentration C(t) of one component changes, instead of
a system of Eq. (2) let us consider a kinetic equation of the type

d{α}C
dt {α} = f (C; λ), C(t0) = C0, (0 < α ≤ 1), (8)

where λ = {λ1, . . . , λs} is a set of parameters. In the dimensionless variables
X = C/C0, τ = t/t0, where C0 is the initial concentration and t0 is the initial or
characteristic time-scale. Considering that the fractional derivative is a linear opera-
tor, Eq. (8) may be expressed in a dimensionless form:

d{α} X

dτ {α} = t0
C0

F(XC0, λ) = f (X; λ). (9)

Like in the classical case, a happy selection of the units of concentration C0 and time
t0 frequently allows a significant simplification of the function f (C, λ).

The stationary solutions of Eq. (9) coincide with the roots of the algebraic equation:

f (X; λ) = 0. (10)

Since X is the concentration, only the positive roots have a physical sense; we shall
denote them as X (0), X (1), X (2), etc. The number of positive roots depends mainly on
the values of parameter λ = {λ1, . . . , λs}, as will be shown on examples. The stability
of each of the states X (s) will be investigated by the method of perturbed solutions
[23]. Inasmuch as X (s) does not depend on time, the magnitude

x(τ ) = X (τ ) − X (s) (11)

in the linear approximation is described by the equation

d{α}x(τ )

dτ {α} = px(τ ); p = f ′(X (s)), (12)
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its solution having the form of

x(τ ) = x0 Eα,1(pτα), x0 = x(0), (13)

where Eα,β(z) is the Mittag-Leffler function (see, e.g., [24]):

Eα,β(z) =
∞∑

n=0

zn

�(αn + β)
, (α > 0, β > 0), (13a)

and �(z) is Euler’s gamma function.
It is possible to show, as follows from the general properties of the Mittag-Leffler

function [24], that when p is a real number and α and β are not integer, solution (13)
does not oscillate. Depending on the sign of the exponent, two regimes are possible.
At f ′(X (s)) < 0, slight deviations from the stationary concentration X (s) monoto-
nously decrease and at f (X (s)) > 0 monotonously increase. Thus, the stability of a
stationary concentration depends on the value of the first derivative function f (X)

at a concentration equal to the stationary value. The case when the derivative at this
point turns into zero requires separate consideration.

A typical behavior of autocatalytic systems is blow-up, i.e. the fact that the solution
is not defined on the whole real time axis (see, e.g., [25]). According to this behavior
of the autocatalytic systems, the time of a chemical reaction t ≥ t0 > −∞, i.e. we
consider the dynamical systems determined on the half-axis t ∈ [t0;+∞).

Note that in the classical case when α = 1, Eq. (9) can always be integrated in
elementary or special functions:

X∫

X1

d X

f (X, λ)
= τ − τ1. (14)

In the general case when α 	= 1, Eq. (9) can be integrated only numerically.

4 Linear nonlocal reactions

Let us consider definite reactions and some systems in the increasing order of their
complexity and strictly keeping to the established scheme. Upon writing down a reac-
tion, we will derive the rule of its change in time, employing stoichiometric coefficients.
The variable components will be designated through X and their concentrations at the
moment t through C(t); hence, C0 ≡ C(t0) is the initial concentration. The initial and
final products of a reaction will be designated through A and F , respectively, and their
concentration through CA and CF . We will analyze the behavior of an open system
under condition of the constant concentration CA (the system is open for component
A) and the constant or changing in time influx of component X (the system is open
with respect to component X , connection with the reservoir is established) and com-
pare it with the behavior of a closed system. The stationary states of the reactions will
be classified as follows:
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A. Equilibrium: stable stationary to a complete thermodynamical balance with the
environment;

B. Mobile equilibrium: stable stationary reactions with entropy production non-equal
to zero, supported by a constant exchange of substance with the environment;

C. Unstable stationary states: stationary reactions that at weak perturbations sponta-
neously deviate from the initial state.

Let us start the discussion from the simplest types of reactions.

4.1 Generation and destruction of component X

A
k1
�
k−1

X (15)

d{α}C
dt {α} = k1CA − k−1C + Ċe (16)

A. Stable concentration of component A

Condition : Ċe = 0 (17a)

Equilibrium : C =
(

k1

k−1

)
CA (17b)

Solution : C(t) = C + [C0 − C]Eα,1(−k−1 |t − t0|α) (17c)

B. Constant influx.

Condition : Ċe = 	 (18a)

Mobile equilibrium : C̃ = 1

k−1
(	 + k1CA) (18b)

Solution : C(t) = C̃ + [C0 − C̃]Eα,1(−k−1 |t − t0|α) (18c)

C. Closed system, concentration CA + C is set.

Condition : C (0) = CA + C (19a)

Equilibrium : C = k1

k1 + k−1
C (0) (19b)

Solution : C(t) = C + [C0 − C]Eα,1(−(k1 + k−1) |t − t0|α) (19c)

4.2 Catalytical generation and destruction

A + Y
k1
�
k−1

X + Y (20)

d{α}C
dt {α} = k1CY CA − k−1CY C + Ċe = k

′
1CA − k

′
−1C + Ċe (21)
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Fig. 1 Changes of the initial
concentration C0 depending on
the solution (17c) of kinetic
equation (16), where k−1 = 0.5
and α = 0.2, 0.4, 0.6, 0.8, 1.0
(Color figure online)

Equilibrium: as in reaction 1.
Mobile equilibrium for a system open with respect to X :

C̃ = 1

k
′
−1

(	 + k
′
1CA). (22)

Solutions: as in reaction 1 for k1 → k
′
1, k−1 → k

′
−1.

5 Properties of linear reactions

First of all, let us note that the limit conditions, i.e. whether a system is open or closed,
exert a significant influence on the position and type of stationary state. Inasmuch as
the above reactions are linear, they are characterized by only one stationary state which
is always stable and corresponds to simple or mobile equilibrium. Introduction of a
catalyzer does not disturb the equilibrium, although it replaces the position of mobile
equilibrium.

Now, let us focus attention on the difference between the classical (α = 1) and
the non-classical fractional cases (α 	= 1). We will differentiate between two types of
velocity—the classical integer Ċ(t) and the fractional Ċ {α}(t). Note that the fractional
velocity of the reaction is determined by the same coefficients k1 and k−1, but its
quantitative behavior will change. Introduction of the new parameter α, in principle,
allows obtaining any kind of degenerative behavior from the asymptotic value C (0) =
const for α = 0 up to the classical exponential degeneration for α = 1. Moreover,
by continuously changing the parameter α we obtain a continuous deformation of the
solution C(t) = C + [C0 − C] exp(−k−1 |t − t0|α) into solution (17c). In Fig. 1 we
have two areas R and M , which appear due to varying the parameter 0 < α < 1, and
two areas G1 and G2, which in contrast with the classical exponential decrease, is
never filled while varying of the parameter α. Note here, that the rate of the chemical
reaction in the area R is faster and in the area M slower than in the usual classical
case. The point c corresponds to the critical value of time tc, when the concentration
C {α}(t) of the chemical reaction according to the kinetic equation (16) becomes equal
to concentration C(t) of the classical kinetic equation (α = 1):
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Fig. 2 The behavior of the
value of parameter tc depending
on the coefficient k. Variation of
the parameter 0<α<1
corresponds to the blue area of
the plot (Color figure online)

Eα,1(−k |t − t0|α) = exp(−k|t − t0|). (23)

In this equation, the parameter k corresponds to the parameter k−1. The solution of
Eq. (23) depends on the values of the parameters α and k:

tc = tc(k, α). (24)

Taking into account the range of the parameters α(0 < α < 1) and k(0 < k < ∞), it
is more informative to consider the plot of tc = tc(k) where variations of the parameter
α correspond to the filling area (see Fig. 2).

An important difference between fractional generalization and formula (16) used
in classical modeling is the possibility to vary the rate of the process. If in the classical
model the deceleration velocity is k−1, than for 0 < α<1 the deceleration velocity is

k(α)
−1 = k−1

τα−1 , (25)

where τ is the characteristic timescale.
It is well known that linear evolutionary systems have no characteristic timescale

value; such values occur in nonlinear systems. In the nonlocal case, we have no char-
acteristic timescale value, either, but a comparison of two different kinetic processes—
fractional and classical (exponential)—allows us obtaining such kind of value. The
critical time tc (24) is such a value and could be used as a characteristic timescale τ

(25) in reaction (16).
The phase portrait of fractional velocity in (C, Ċ {α}) coordinates, like in the classical

case α ≡ 1, is a set of straight lines crossing the origin of the coordinates. However, in
coordinates (C, Ċ) we have a phase portrait only for α = 1, since Ċ of solution (17c)
or (19c) for 0 < α1 < does not exist, we have to turn to the area of the parameter
1 < α < 2. As follows from direct calculations, the function Ċ(t) in case C(t) is
the solution (17c) or (19c), is not continuous at the point t0; therefore, the function
Ċ(t) has no chemical sense. From the mathematical point of view, this is no surprise:
an α times continuous differential function must not be an 1 + α times continuous
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differential function, the same as one time differentiated function must not be two
times continuously differentiated.

A standard mathematical model of chemical reactions, based on the reaction-
diffusion equation, see, e.g., in [5,26]. The reaction-diffusion equation, in its turn,
is based on the mathematical description of the standard diffusion process. In the case
of non-standard diffusion, we have to use the generalization of the reaction-diffusion
equation. Theoretical investigations of diffusion on fractal polynomials [10,11] mean
that at least fractal inhomogeneity could be described by the new mathematical instru-
ments. Indeed, let we have the fractional generalization of the diffusion in the form

∂βC

∂tβ
= D

∂αC

∂xα
, (26)

where C = C(x, t), ∂β/∂zβ is the fractional derivative (see below and Appendix) and
D is the diffusion coefficient. The important remark concerning the orthant invariance
in respect to the space inverse operator implies a special form of the fractional reaction-
diffusion model in which the order of the space fractional derivative is 2α. The parity
of the space fractional derivative preserves the orthant as an invariant set.

Let 〈|x |α〉 = ∫ |x |αC(x, t)dx be the statistical (central) moment of C(x, t). In the
classical case, α = 1, 2, 3 is an integer, but now let α be arbitrarily positive. Then, the
evolution of the moments of |x |α is

∂β 〈|x |α〉
∂tβ

= D
∫

|x |α ∂C(x, t)

∂|x |α dx = D
∫

C(x, t)
∂

∂|x |α |x |αdx = D�(1 + α),

(27)

where we use the formulas from “Appendix” of integration by parts. After fractional
integration (27) over tβ we obtain:

〈|x |α 〉 = D
�(1 + α)

�(1 + β)
tβ (28)

From (28) it follows that at α = 2 we have

〈
|x |2

〉
= 2D

�(1 + β)
tβ/2 (29)

Thus, this expression generalizes the classical mean square displacement formula.

6 Conclusions and discussion

Note that in this paper, only linear catalytical reactions are presented; however, even
in this—simplest—case, the inhomogeneous behavior of the reaction, accounted for
by the parameter α, reveals an interesting qualitative diversity of dynamical behavior.
The method proposed in the paper does not deny the classical method but is more

123



J Math Chem (2013) 51:914–926 923

efficient in cases of small gradients of concentrations and allows explaining the non-
traditional dynamics without employing nonlinear terms. Of particular interest are
nonlinear reactions: they are much more complicated, but also much more diverse.

The limits of change of the parameter 0 < α ≤ 1 are closely related to the
dimensionality of a dynamical system. If 1 < α ≤ 2, the evolutionary equation
Ċ {α} = f (C), as a result of introducing a new variable, C1 (t), is equivalent to the
system

{
Ċ {α−1}

1 = f (C),

C1 = Ċ .

In this paper, we consider only one-dimensional systems. Multidimensional inhomo-
geneous reactions need special consideration.

An important thesis of physics, referred to as such in cybernetics by N. Wiener,
says that the isomorphism of differential evolutionary equations describing heteroge-
neous phenomena testifies to the structural isomorphism of these phenomena (see, e.g.,
[27]). Therefore, under certain conditions, differential equations of chemical kinetics
are isomorphous to differential equations of nonlocal dynamics, electrical engineer-
ing, population regulation and dynamics theory. In other words, it is possible to find
chemical systems whose behavior is similar to the behavior of a mechanical pertur-
bation spreading in an inhomogeneous viscoelastic medium, or to the reduction of a
biological population in an ecological system. This observation implies that the results
presented in this study may be of interest to wide circles of researchers.

7 Appendix

The left Riemann–Liouville fractional derivative

RL
a Dt+α f (t) = 1

Γ (n − α)

(
d

dt

)n t∫

a

f (τ )dτ

(t − τ)1+α−n
. (30)

The right fractional derivative

RL
b Dt−α f (t) = 1

Γ (n − α)

(
− d

dt

)n b∫

t

f (τ )dτ

(τ − t)1+α−n
, (31)

where n = |α| + 1 and α > 0.
Unfortunately, the Riemann–Liouville fractional derivative of the constant function

is non-zero. This is not convenient when analysing, e.g., the asymptotic and other
states. To escape this inconvenience, the corresponding Caputo fractional derivatives
are defined as follows:
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• the left Caputo fractional derivative

a Dα
t+ f (t) = 1

Γ (n − α)

t∫

a

dτ

(t − τ)1+α−n

(
d f (τ )

dτ

)n

(32)

• the right Caputo fractional derivative

b Dα
t− f (t) = 1

Γ (n − α)

b∫

t

dτ

(τ − t)1+α−n

(
d f (τ )

dτ

)n

, (33)

where α represents the order of the derivative: n − 1 < α < n and α > 0.
The relationship between the Riemann–Liouville and the Caputo fractional deriv-

atives is (0 < α < 1):

a Dα
t+ f (t) = RL

a Dt+α f (t) − 1

Γ (1 − α)

f (a)

(t − a)α
, (34)

b Dα
t− f (t) = RL

b Dt−α f (t) − 1

Γ (1 − α)

f (b)

(b − t)α
. (35)

Thus, e.g., the left Riemann–Liouville fractional derivative of the constant function C
equals C/ |Γ (1 − α)(t − a)α|, whereas the left Caputo fractional derivative is equal
to zero. On the other hand, many properties of the Caputo fractional derivatives are the
same as those of the Riemann–Liouville fractional derivative when f (a) = f (b) = 0:

a D−α
t+ f (t) = a I α

t+ f (t), b D−α
t− f (t) = b I α

t− f (t), α > 0 (36)

a I α
t+ f (t) = 1

Γ (α)

t∫

a

f (τ )dτ

(t − τ)1−α
−, t > a, (37)

b I α
t− f (t) = 1

Γ (α)

b∫

t

f (τ )dτ

(τ − t)1−α
−, t < b, (38)

a Dα
t+ f (t) = a I −α

t+ f (t), b Dα
t− f (t) = b I −α

t− f (t), α > 0 (39)

a Dα
t+a Dβ

t+ f (t) = a Dβ
t+a Dα

t+ f (t) = a Dα+β
t+ f (t), (40)

a I α
t+a I β

t+ f (t) = a I β
t+a I α

t+ f (t) = a I α+β
t+ f (t), (41)

The analogue of the Taylor expansion is valid here:

f (t) =
n−1∑

i=0

a Dα+ j
t+ f (0)

Γ (1 + α + j)
tα+ j + Rn(t), n = [Re α] + 1, (42)

where Rn(t) = a I α+ j
t+ a Dα+ j

t+ f (t).

123



J Math Chem (2013) 51:914–926 925

As an example, let us consider the derivatives of some functions:

−∞ Dα
t+ sin λt = λα sin

(
λt + πα

2

)
, (43)

−∞ Dα
t+ cos λt = λα cos

(
λt + πα

2

)
, (44)

where λ > 0, α > −1. When α ≤ −1,we have to use the property (39):

−∞Dα
t+eλt+μ = λαeλt+μ, Re λ > 0. (45)

Some special functions, e.g., the Mittag-Leffler function

Eα,β(z) =
∞∑

n=0

zn

Γ (αn + β)
(46)

and the generalized exponential function

1 + Ez
α = 1 +

∞∑

n=0

zn+α

Γ (1 + α + n)
, (47)

naturally appear and are widely used in fractional calculus.
In this paper, the fractional Caputo derivative t0 Dα

t+ = dα

dtα is used.
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